

60W, 1.8 - 1000 MHz LDMOS Amplifier

Product datasheet

Description

The HTN7G09S060P is an unmatched discrete LDMOS Power Amplifier with 60W saturated output power covering frequency range from 1.8 - 1000 MHz.

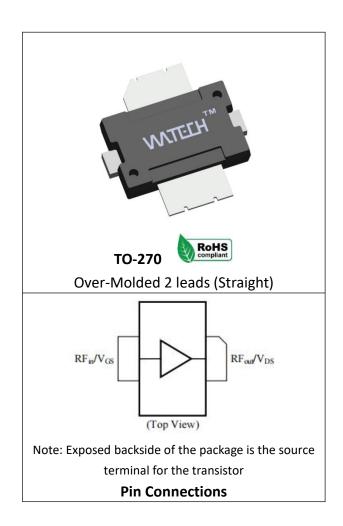
Features

• Operating Frequency Range: 1.8 - 1000 MHz

• Operating Drain Voltage: +28V

• Saturation Output Power: 60W

• Power Average: 8W


 Excellent thermal stability due to low thermal resistance package

Enhanced robustness design without device degradation

Internally integrated enhanced ESD design

Applications

- CDMA
- W-CDMA
- GSM EDGE
- MC-GSM
- TDD/FDD LTE
- WiMAX
- ISM

Ordering Information

Part Number	Description
HTN7G09S060P	Reel Package
HTN7G09S060P EVB	700 - 960 MHz EVB

Product datasheet

Typical Performance

RF Characteristics (WCDMA)

Freq (MHz)	Gain (dB)	Eff (%)	ACPR_L* @5MHz (dBc)	IRL (dB)
920	22.1	19.0	-45.3	10
940	21.8	19.5	-46.3	12
960	21.0	20.7	-47.8	8

Test conditions unless otherwise noted: 25 °C, VDD = +28Vdc, IDQ = 550mA, PAVG = 39 dBm (7.94W), 1C-WCDMA 5MHz Signal, 9.9 dB PAR @ 0.01% CCDF test on HOTLO Application Board

Absolute Maximum Ratings

Parameter	Range/Value	Unit
Drain voltage (VDSS)	-0.5, +65	V
Gate voltage (V _{GS})	-5 to +10	V
Operation voltage (VDD)	+0 to +28	V
Storage Temperature (Tstg)	-55 to +150	°C
CasecTemperature (Tc)	-40 to +150	°C
Junction Temperature (T _J)	-40 to +225	°C

Electrical Specification

DC Characteristics

Parameter	Conditions	Min	Тур	Max	Unit
Breakdown Voltage V(BR)DSS	Vgs=0V, Ids=48uA	65	-	-	V
Gate-Source Threshold Voltage V _{GS(th)}	Vds=Vgs, Ids=48uA	0.8	1.3	1.8	V
Drain Leakage Current Ioss	Vgs=0V, Vds=65V	-	-	10	uA
Gate Leakage Current IGSS	Vgs=5V, Vds=0V	-	-	1	uA

^{*}Uncorrected DPD

Product datasheet

Condition	Test Result
VSWR=10:1, at all Phase Angles, VDD = +28Vdc, IDQ= 400mA,	No Device
CW signal 100W @940 MHz test on HOTLO Application Board	Degradation

Thermal Information

Parameter	Condition	Value (Typ)	Unit
Thermal Resistance	Tcase= 60°C, VDD = +28Vdc, IDQ= 400mA,	0.95	°C /W
Junction to Case (Rтн)	CW signal 60W	0.95	C/VV

Load Pull Performance for Maximum Power (P1dB/P3dB)

Test conditions unless otherwise noted: 25 °C, VDD = +28Vdc, IDQ= 400mA, PW = 40us, DC= 4%

Max Output Power P1dB						
Freq (MHz)	Z_source (Ω)	Z_load [1] (Ω)	Gain (dB)	P1dB (dBm)	P1dB (W)	Eff (%)
920	0.78-j*0.90	2.22-j*0.20	22.0	49.87	97.05	56.92
1400	0.74-j*3.05	1.59-j*0.93	19.27	49.67	92.68	58.91
1800	0.34-j*3.35	1.33-j*2.96	16.70	48.96	78.70	52.68

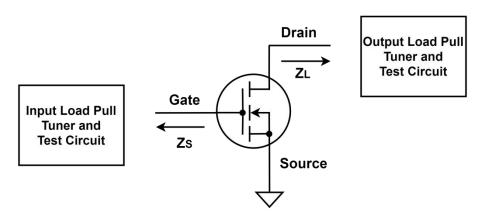
[1] Load impedance for optimum P1dB pout

Max Output Power P3dB						
Freq (MHz)	Z_source (Ω)	Z_load [2] (Ω)	Gain (dB)	P3dB (dBm)	P3dB (W)	Eff (%)
920	0.78-j*0.90	2.26-j*0.65	22.02	50.89	122.74	61.81
1400	0.74-j*3.05	1.66-j*1.29	18.89	50.77	119.40	60.61
1800	0.34-j*3.35	1.57-*j3.12	16.68	50.13	103.04	55.67

[2] Load impedance for optimum P3dB pout

Product datasheet

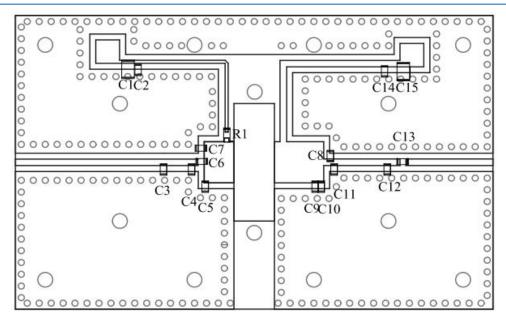
Load Pull Performance for Maximum Efficiency (P1dB/P3dB)


Test conditions unless otherwise noted: 25 °C, VDD = +28Vdc, IDQ= 400mA, PW = 40us, DC= 4%

	Max Efficiency P1dB					
Freq (MHz)	Z_source (Ω)	Z_load [1] (Ω)	Gain (dB)	P1dB (dBm)	P1dB (W)	Eff (%)
920	0.78-j*0.90	2.56+j*1.75	24.74	48.22	66.37	72.51
1400	0.74-j*3.05	1.54+j*0.34	21.48	47.57	57.15	69.45
1800	0.34-j*3.35	1.08-j*2.06	18.96	47.57	57.15	59.14

[1] Load impedance for optimum P1dB efficiency

	Max Efficiency P3dB						
Freq (MHz)	Z_source (Ω)	Z_load [2] (Ω)	Gain (dB)	P3dB (dBm)	P3dB (W)	Eff (%)	
920	0.78-j*0.90	2.31+j*1.06	24.70	49.24	83.95	76.91	
1400	0.74-j*3.05	1.61+j*0.04	21.00	49.33	85.70	71.75	
1800	0.34-j*3.35	1.29-j*2.37	18.19	49.32	85.51	61.43	

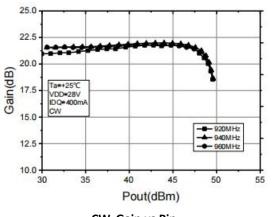

[2] Load impedance for optimum P3dB efficiency

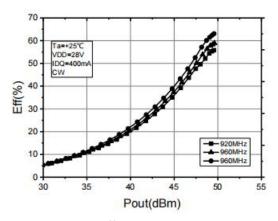
 $Z_source:$ Measured impedance presented to the input of the device at the package reference plane $Z_source:$ Measured impedance presented to the output of the device at the package reference plane

Product datasheet

HTN7G09S060P 920 - 960 MHz Reference Design

EVB Layout

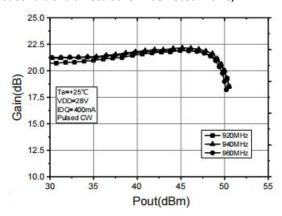

Bill of Materials (BoM) - HTN7G09S060P

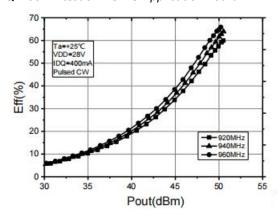

920 - 960 MHz Reference Design

Reference	Value	Description	Manufacturer	P/N
Q1	-	60W, 1.8 - 1000 MHz LDMOS PA	Holto	HTN7G09S060P
C2, C6, C13, C14	47pF	MLCC	ATC	600S470BT260XT
C3, C4, C5, C7, C8	8.2pF	MLCC	ATC	600S8R2BT260XT
C11, C12	4.3pF	MLCC	ATC	600S4R3BT260XT
C9	2.5pF	MLCC	ATC	600S2R5BT260XT
C10	2pF	MLCC	ATC	600S2R0BT260XT
C15	10uF	MLCC	Murata	GRM32EC72A106KE05
C1	4.7uF	MLCC	Murata	GRM31CR71H475KA12L
R1	10Ω	Thick Film Resistor	YAGEO	RC0603FR-0710RL
РСВ	Rogers4350B	(er = 3.66), 30 mil (0.762	2 mm), 35 μm (1c	oz)

Product datasheet

Performance Plots



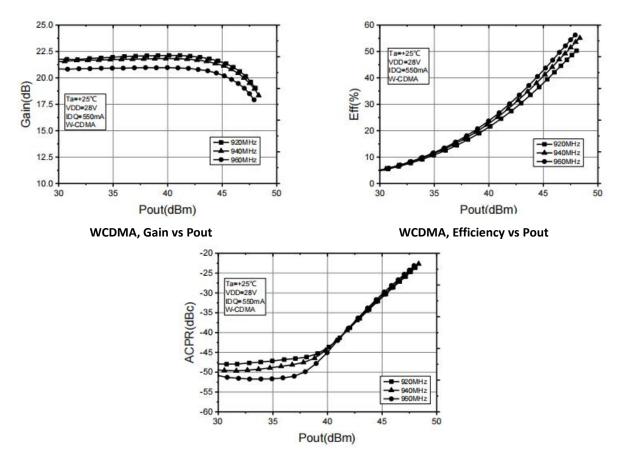


CW, Gain vs Pin

CW, Efficiency vs Pout

Test conditions unless otherwise noted: 25 °C, VDD = +28Vdc, IDQ=400mA test on HOTLO Application Board

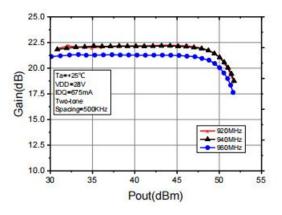
Pulsed CW, Pout vs Pin

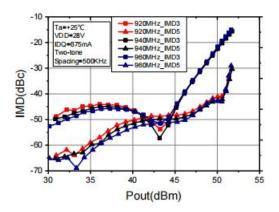

Pulsed CW, Efficiency vs Pout

Test conditions unless otherwise noted: 25 °C, VDD = +28Vdc, IDQ=400mA, PW = 100us, DC=10% test on HOTLO Application Board

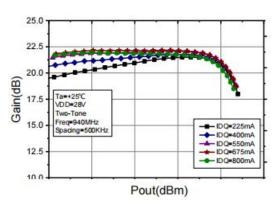
60W, 1.8 - 1000 MHz LDMOS Amplifier

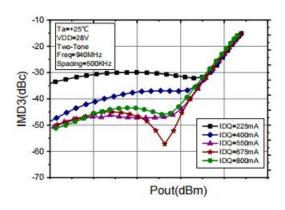
Product datasheet


WCDMA, ACPR_5MHz, ACPR_10MHz vs Pout

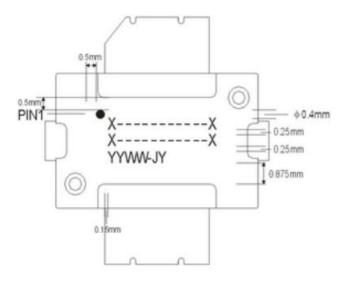

Test conditions unless otherwise noted: $25 \, ^{\circ}$ C, VDD = $+28 \, Vdc$, IDQ= $550 \, mA$, $1C-WCDMA \, 5MHz \, Signal$, $9.9 \, dB \, PAR \, @ 0.01\% \, CCDF \, test \, on \, HOTLO \, Application \, Board$

60W, 1.8 - 1000 MHz LDMOS Amplifier


Product datasheet



Two Tones Gain vs Pout (PEP) @Freq's

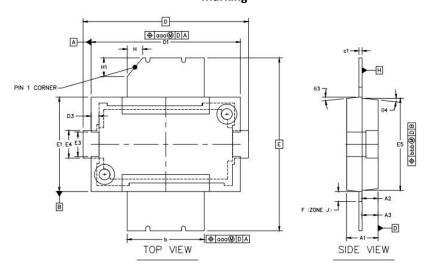

Two Tones Gain vs Pout (PEP) @Idq's

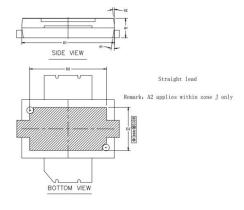
Two Tones IMD vs Pout (PEP) @Idq's

Test conditions unless otherwise noted: 25 °C, VDD = +28Vdc, IDQ=675mA, Two tone Test, Carrier Spacing @500KHz test on HOTLO Application Board

Product datasheet

Package Marking and Dimensions




- Line1 (fixed): Device name in W/O
- Line2 (unfixed): Marking Lot No in W/O

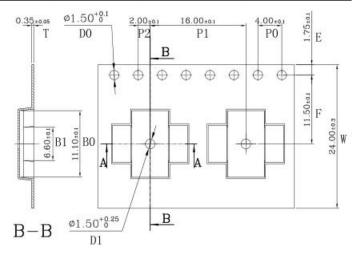
(Sample: E596-20140001)

• Line3 (unfixed): Date Code + JY
This Marking SPEC only stipulates
the content of Marking. For
marking requirements such as font
and size, please refer to the latest
version of "Holto Product Printing
Specification"

Marking

60W, 1.8 - 1000 MHz LDMOS Amplifier

Product datasheet


		SYMBOL	MIN	NOM	MAX
TOTAL THICKNESS		A1	1.98	2.03	2.08
		A2	1.02	1.045	1.07
MOLD THICKNESS		A3	0.99	1.04	1.09
L/F THICKNESS		C1		0.203 REF	
BODY SIZE	×	D	10.57	10.67	10.77
BODT SIZE	Y	E	11.08	11.18	11.28
CION SIZE	×	D2		7.37 MIN	
CION SIZE	Y	E2	9	3.81 MIN	
MOLD LENGTH		D1	9.6	9.65	9.7
LENGTH		D3	0.41	0.51	0.61
MOLD WIDTH		E1	6.05	6.1	6.15
		E3	1.48	1.58	1.68
WIDTH		E4	1.68	1.78	1.88
		E5	5.91	5.96	6.01
ZONE WIDTH		F	0.64 BSC		
LEAD WIDTH		b	4.9	4.98	5.06
PACKAGE EDGE TOLER	ANCE	aaa		0.1	
LEAD OFFSET		bbb	0.2		
		01	7.	9.	111
TAPER ANGLE		82	4'	6°	8*
TALLY AROLL		93	4'	6*	8.
		94	4.	6°	8.
DIN1 SITE		н	1 REF		
I III SIZE	N1 SIZE	H1	1.2 REF		

Package Dimensions

Product datasheet

Tape and Reel Information

Package Type	Reel Size(inch)	Qty/Reel(pcs)	Qty/Box(pcs)	Qty/Carton(pcs)
TO270	13inch	1500	1500	7500

Tape & Reel Packaging Descriptions

Handling Precautions

Parameter	Grade
Moisture Sensitivity Level MSL	3

Parameter	Rating	Standard
ESD – Human Body Model (HBM)	Class 1B	JESD22-A114
ESD – Human Body Model (MM)	Class A	EIA/JESD22-A115
ESD – Charged Device Model (CDM)	Class III	JESD22-C101

RoHS Compliance

This product is compliant with the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU.

Datasheet Status

Document status	Product status	Definition
Objective Datasheet	Design simulation	Product objective specification
Preliminary Datasheet	Customer sample	Engineering samples and first test results
Product Datasheet	Mass production	Final product specification

HOLTO

HTN7G09S060P 60W, 1.8 - 1000 MHz LDMOS Amplifier

Product datasheet

Abbreviations

Acronym	Definition
LDMOS	Laterally-Diffused Metal-Oxide Semiconductor
CW	Continuous Waveform

Revision history

Document ID	Datasheet Status	Release Date	Revision Version
Rev 2.2	Product	March 2023	New format based on English version datasheet
Rev 2.3	Product	March 2024	Version released after re review
Rev 2.4	Product	June 2024	Update package 3D picture

Product datasheet

60W, 1.8 - 1000 MHz LDMOS Amplifier

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations and information about HOTLO:

• Web: www.andesource.com

• Email: andehk@andesource.com

For technical questions and application information:

Email: andetech@andesource.com

Important Notice

Information in this document is believed to be accurate and reliable. However, HOTLO does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

"Typical" parameters are the average values expected by HOTLO in large quantities and are provided for information purposes only. All information and specifications contained herein are subject to change without notice and customers should obtain and verify the latest relevant information before placing orders for HOTLO products.

The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

Applications that are described herein for any of these products are for illustrative purposes only. HOTLO makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using HOTLO products, and HOTLO accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the HOTLO product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third-party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

HOTLO products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety- critical systems or equipment, nor in applications where failure or malfunction of a HOTLO product can reasonably be expected to result in personal injury, death or severe property or environmental damage. This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.