HOLTO

300W, 2.4 - 2.5 GHz GaN Amplifier

Product datasheet

Description

The HTH2D25P300H is an internally Input/Output pre-matched discrete GaN on SiC HEMT Power Amplifier with 300W saturated output power covering frequency range from 2.4 to 2.5 GHz.

Features

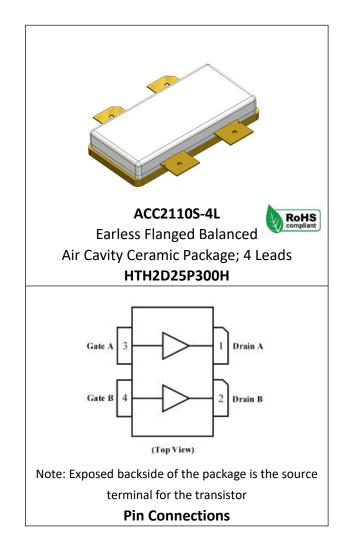
• Operating Frequency Range: 2.4 - 2.5 GHz

• Operating Drain Voltage: 48V

• Saturation Output Power: 300W

 Excellent thermal stability due to low thermal resistance package

Enhanced robustness design without device degradation


Internally integrated enhanced ESD design

Applications

- RF Industrial Heating and Drying
- Solid-state Commercial and Industrial Cooking
- Plasma Lighting
- Semiconductor Equipment
- Automotive Ignition
- Medical & Scientific Sciences

Ordering Information

Part Number	Description	
HTH2D25P300H	Tray Package	
HTH2D25P300H EVB	2.4-2.5 GHz EVB	

HTH2D25P300H 300W, 2.4 - 2.5 GHz GaN Amplifier

Product datasheet

Typical Performance

RF Characteristics (Pulsed-CW)

Freq (MHz)	P3dB (dBm)	P3dB (W)	Gain (dB)	Eff(%)@P3dB
2400	56.0	398	19.8	74.6
2450	55.4	347	19.0	74.9
2500	54.8	302	18.2	74.3

Test conditions unless otherwise noted: 25 °C, VDD = +48Vdc, IDQ = 100mA, PW = 100us, Duty Cycle= 10%, tested on HOTLO Application Board

RF Characteristics (CW)

Freq (MHz)	P3dB (dBm)	P3dB (W)	Gain (dB)	Eff(%)@P3dB
2400	55.6	363	19.1	72.1
2450	55.1	324	18.8	72.3
2500	54.9	309	17.3	71.5

Test conditions unless otherwise noted: 25 °C, VDD = +48Vdc, IDQ =100mA, CW, tested on HOTLO Application Board

Absolute Maximum Ratings

Parameter	Range/Value	Unit
Drain voltage (VDSS)	0 to 130	V
Gate voltage (V _{GS})	-10 to 2	V
Storage Temperature (Tstg)	-55 to 150	°C
Junction Temperature (T _J)	225	°C

Electrical Specification

DC Characteristics

Parameter	Conditions	Min	Тур	Max	Unit
Breakdown Voltage V(BR)DSS	Vgs= -10V,Ids=48mA	130	-	-	V
Gate-Source Threshold Voltage V _{GS(th)}	Vds=10V, Ids=48mA	-	-2.6	-	V
Drain Leakage Current loss	Vgs= -10V, Vds=50V	-	-	19.2	mA
Gate Leakage Current IGSS	Vgs=-10V, Vds=0V	-	-	4.8	mA

300W, 2.4 - 2.5 GHz GaN Amplifier

Product datasheet

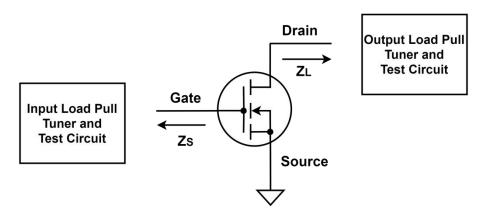
Load Mismatch Test

Condition	Test Result
VSWR=10:1 at all Phase Angles, V_{DD} = +48Vdc, I_{DQ} =100mA, P_{AVG} = 300W,	No Device
PW = 100us, Duty Cycle=10% , freq@2450 MHz	Degradation

Thermal Information

Parameter	Condition	Value (Typ)	Unit
Thermal Resistance	Ti- 07°C massured under DC condition	0.20	°C /W
Junction to Case (Rтн)	Tj= 97°C, measured under DC condition	0.38	C / VV

Load Pull Performance

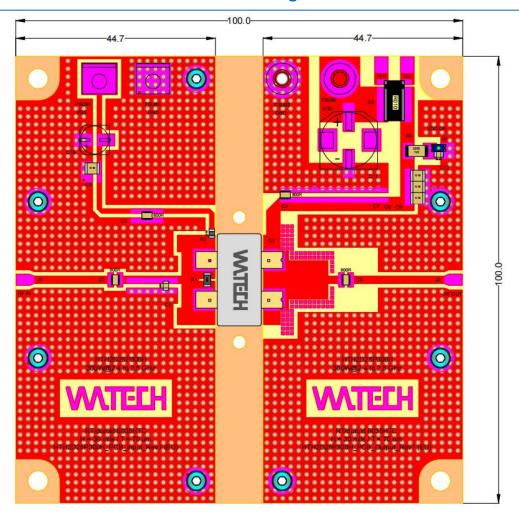

Test conditions unless otherwise noted: 25 °C, VDD = +48Vdc, IDQ= 100mA, PW = 100us, Duty Cycle= 10%

Max Output Power							
Freq	Freq Z_source Z_load [1] Gain P3dB P3dB Eff						
(MHz)	(Ω)	(Ω)	(dB)	(dBm)	(W)	(%)	
2400	4.48+j*2.50	7.03-j*4.10	18.90	57.02	503.50	64.74	
2500	2.10+j*1.86	7.70-j*3.59	19.10	56.96	496.59	67.02	

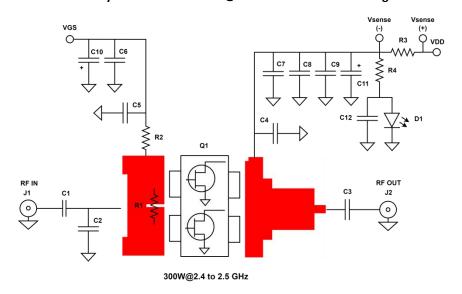
[1] Load impedance for optimum P3dB pout

Max Drain Efficiency							
Freq	Freq Z_source Z_load [2] Gain P3dB P3dB Eff						
(MHz)	(Ω)	(Ω)	(dB)	(dBm)	(W)	(%)	
2400	4.48+j*2.50	2.70-j*3.80	20.31	55.20	331.13	75.58	
2500	2.10+j*1.86	2.96-j*5.10	20.55	54.76	299.23	75.15	

[2] Load impedance for optimum P3dB efficiency



 $Z_source:$ Measured impedance presented to the input of the device at the package reference plane $Z_source:$ Measured impedance presented to the output of the device at the package reference plane



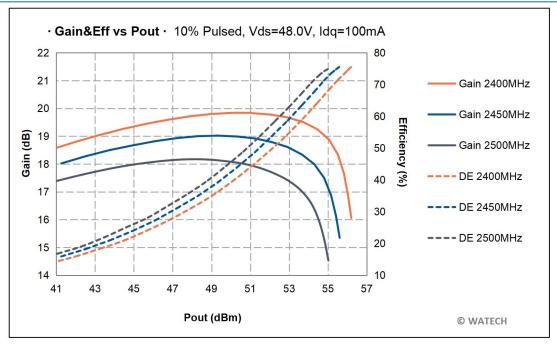
Product datasheet

HTH2D25P300H 2.4-2.5GHz Reference Design

EVB Layout HTH2D25P300H @2.4-2.5GHz Reference Design

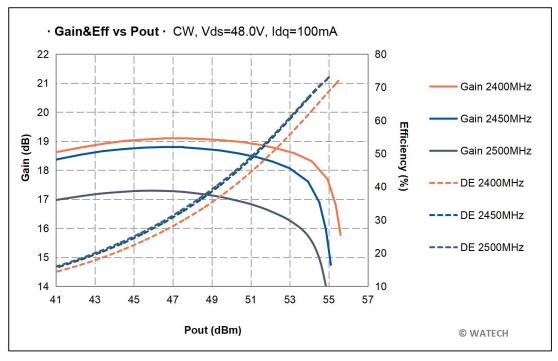
Schematic HTH2D25P300H @2.4-2.5GHz Reference Design

300W, 2.4 - 2.5 GHz GaN Amplifier


Product datasheet

Bill of Materials (BoM) - HTH2D25P300H 2.4-2.5GHz Reference Design

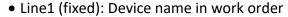
Reference	Value	Description	Manufacturer	P/N	
Q1	-	300W, 2400 - 2500 MHz GaN on SiC Amplifier	HOTLO	HTH2D25P300H	
C1, C3, C4, C5	20pF/500VDC	MLCC	Beijing YuanLu	MQ101111M7G3A200JNMB	
C2	2p2F/250VDC	GRM21A5C2E2R2FW01	Murata	GRM21A5C2E2R2FW01	
C6, C8,C9	10uF/100VDC/1210	MLCC	Murata GRM	GRM32EC72A106KE05L	
C7	390pF/500VDC/1210	MLCC	Beijing YuanLu	MQ101111M7G3A391JNMB	
C11	22uF/35VDC	Aluminium Electrolytic Capacitor SMD	Nichicon	UWT1V220MCL1GB	
C12	470uF/100VDC	Aluminium Electrolytic Capacitor SMD	Vishay	MAL215099913E3	
R1	5.6Ω/1206	Thick Film Resistor	KOA	RK73B2BTTD5R6J	
R2	12Ω/0805	Thick Film Resistor	KOA	RK73B2ATTDD120J	
		Diode Circuit			
D1	1206 w/LENS GREEN 570nm	Standard LED - SMD	Dialight	599-0460-127F	
R4	1Κ3Ω/1%/1206	Thick Film Resistor	Vishay	CRCW12061K30FKEAHP	
C12	1nF/250VDC/0805	MLCC	TDK	C2012X7R2E102M085AE	
		Connectors and PCB			
PSU#1, PSU#2	n/a	Terminals .250 FAST TAB	TE Connectivity	42117-2	
PSU#3, PSU#4	n/a	Terminals WPSMBU SMT Bush Type A M3 Thread	Wurth Elektronik	7466003	
J1, J2	n/a	N-type Panel Connector (F)	Amphenol	172228	
РСВ	PCB RT/Duroid 6035HTC (er = 3.5 ± 0.05), 30 mil (0.762 mm), 70 μm (2oz)				


Product datasheet

Performance Plots

Pulsed CW, Gain & Eff vs Pout

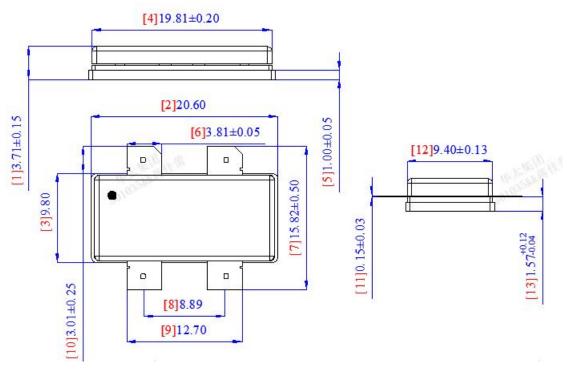
Test conditions unless otherwise noted: 25 °C , VDD = +48Vdc, IDQ = 100 mA, PW = 100us, Duty Cycle = 10%, tested on HOTLO Application Board


CW, Gain & Eff vs Pout

Test conditions unless otherwise noted: 25 °C , VDD = +48Vdc, IDQ = 100 mA, CW, tested on HOTLO Application Board

Package Marking and Dimensions

300W, 2.4 - 2.5 GHz GaN Amplifier


Product datasheet

- Line2 (unfixed): Mark Lot number in work order (Sample: E596-EERA0001)
- Line3 (unfixed): Date Code + "SS" (The last two digits of sub lot Number)

This Marking SPEC only stipulates the content of Marking. For marking requirements such as font and size, please refer to the latest version of "Holto Product Printing Specification"

Marking

Package Dimensions

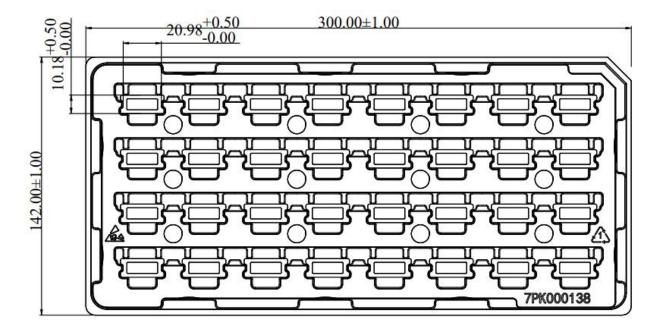
ACC2110S-4L Earless Flanged Balanced Air Cavity Ceramic Package; 4 leads

HOLTO

HTH2D25P300H

YYWW SS

XXXX-XXXXXXXX


300W, 2.4 - 2.5 GHz GaN Amplifier

Product datasheet

Packing Information

HTH2D25P300H:

Package Type	Qty/Tray(pcs)	Qty/Box(pcs)	Qty/Carton(pcs)
ACC2110S-4L	32	160	960

Packaging Descriptions

Handling Precautions

Parameter	Rating	Standard
ESD – Human Body Model (HBM)	Class 1B	JESD22-A114
ESD – Human Body Model (MM)	Class A	EIA/JESD22-A115
ESD – Charged Device Model (CDM)	Class III	JESD22-C101

RoHS Compliance

This product is compliant with the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU.

HTH2D25P300H 300W, 2.4 - 2.5 GHz GaN Amplifier

Product datasheet

Datasheet Status

Document status	Product status	Definition	
Objective Datasheet	Design simulation	Product objective specification	
Preliminary Datasheet	Customer sample	Engineering samples and first test results	
Product Datasheet	Mass production	Final product specification	

Abbreviations

Acronym	Definition	
GaN	Gallium Nitride	
CW	Continuous Waveform	

Revision history

Document ID	Datasheet Status	Release Date	Revision Version
Rev 1.0	Product	Jun.2024	Product version datasheet
Rev 1.1	Product	Jun.2024	Update CW test plot
Rev 1.2	Product	Jun.2024	New product version datasheet

HOLTO

HTH2D25P300H 300W, 2.4 - 2.5 GHz GaN Amplifier

Product datasheet

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations and information about HOTLO:

• Web: www.andesource.com

• Email: andehk@andesource.com

For technical questions and application information:

Email: andetech@andesource.com

Important Notice

Information in this document is believed to be accurate and reliable. However, HOTLO does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

"Typical" parameters are the average values expected by HOTLO in large quantities and are provided for information purposes only. All information and specifications contained herein are subject to change without notice and customers should obtain and verify the latest relevant information before placing orders for HOTLO products.

The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

Applications that are described herein for any of these products are for illustrative purposes only. HOTLO makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using HOTLO products, and HOTLO accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the HOTLO product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third-party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

HOTLO products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety- critical systems or equipment, nor in applications where failure or malfunction of a HOTLO product can reasonably be expected to result in personal injury, death or severe property or environmental damage. This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.