

400W, 3.4 - 3.6 GHz GaN Amplifier

Product datasheet

Description

The HTH1D36P450H is an unmatched discrete GaN on SiC Power Amplifier with 400W saturated output power covering frequency range from 3.4 - 3.6 GHz.

Features

• Operating Frequency Range: 3.4 - 3.6 GHz

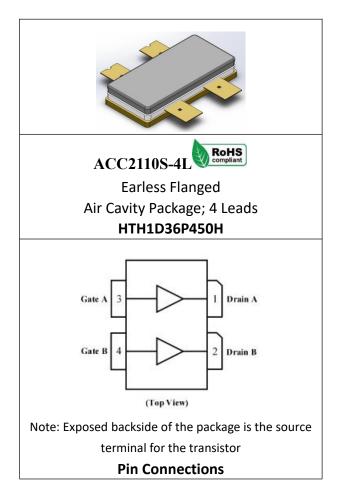
Operating Drain Voltage: +48V

Saturation Output Power: 400W

• Power Average: 55W

 Device can be used on a single-ended or in a push-pull configuration. Doherty application applicable

 Excellent thermal stability due to low thermal resistance package


Enhanced robustness design without device degradation

• Efficiency: 48.7%@3.5GHz, WCDMA

• Gain: 14.6dB@3.5GHz, WCDMA

Applications

- 3GPP 5G NR FR1 n48/77/78
- 4G-LTE B42
- Amplifier for Micro and Macro Base Stations
- Repeaters/DAS
- Mobile Infrastructure

Ordering Information

Part Number	Description
HTH1D36P450H	Reel Package
HTH1D36P450HEVB	3.4 - 3.6 GHz EVB

Product datasheet

Typical Performance

RF Characteristics (WCDMA)

Freq (GHz)	Gain (dB)	Eff (%)	ACPR_L* @5MHz (dBc)	ACPR_U* @5MHz (dBc)
3.4025	14.1	48.44	-24.6	-24.4
3.5000	14.6	48.69	-26.6	-26.6
3.5975	14.4	49.09	-28.2	-28.2

Test conditions unless otherwise noted: 25 °C, VVDD = +48Vdc, IDQ_Carrier= 240mA, Vgsp = -5.3V, PAVG = 47.4 dBm 1C-WCDMA 5MHz Signal, 9.9 dB PAR @ 0.01% CCDF test on HOTLO Application Board

Absolute Maximum Ratings

Parameter	Range/Value	Unit
Drain voltage (VDSS)	+150	V
Gate voltage (V _{GS})	-10 to +2.0	V
Storage Temperature (Tstg)	-65 to +150	°C
Junction Temperature (T _J)	225	°C

Electrical Specification

DC Characteristics (Carrier)

Parameter	Conditions	Min	Тур	Max	Unit
Breakdown Voltage V(BR)DSS	Vgs=-8V, Ids=24mA	150	-	-	V
Gate-Source Threshold Voltage V _{GS(th)}	Vds=10V, Ids=24mA	-3.6	-2.8	-2.2	V
Drain Leakage Current IDSS	Vgs=-8V, Vds=50V	-	7.2	-	mA
Gate Leakage Current Igss	Vgs=-10V, Vds=0V	-	-2.4	-	mA

DC Characteristics (Peak)

Parameter	Conditions	Min	Тур	Max	Unit
Breakdown Voltage V(BR)DSS	Vgs=-8V, Ids=33.6mA	150	-	-	V
Gate-Source Threshold Voltage V _{GS(th)}	Vds=10V, Ids=33.6mA	-3.6	-2.8	-2.2	V
Drain Leakage Current IDSS	Vgs=-8V, Vds=50V	-	10	-	mA
Gate Leakage Current Igss	Vgs=-10V, Vds=0V	-	-3.6	-	mA

^{*}Uncorrected DPD

400W, 3.4 - 3.6 GHz GaN Amplifier

Product datasheet

RF Characteristics (Pulsed CW)

Parameter	Freq (GHz)	Min	Тур.	Max	Unit
P1dB	3.5	-	50.6	-	dBm
P5dB	3.5	50	55.8	57	dBm
Gain Flatness	3.4 - 3.6 PAVG = 47.4 dBm	-	0.5	-	dB

Test conditions unless otherwise noted: 25 °C, VDD = +28Vdc, $IDQ_Carrier = 300mA$, Vgsp = -5.3V, $Pulse\ Width = 1ms$, $Pulse\ Vgcle = 10\%$ test on HOTLO Production Board

RF Characteristics (WCDMA)

Parameter	Conditions	Min	Тур.	Max	Unit
Frequency		3.5			GHz
Gain	PAVG = 47.4 dBm	10	14.6	20	dB
Eff	PAVG = 47.4 dBm	33	48.7	70	%
ACPR@5MHz*	PAVG = 47.4 dBm	-40	-26.6	-20	dBc

Test conditions unless otherwise noted: 25 °C, VVDD = +48Vdc, IDQ_Carrier= 240mA, Vgsp = -5.3V, 1C-WCDMA 5MHz Signal, 9.9 dB PAR @ 0.01% CCDF test on HOTLO Application Board

Load Mismatch Test

Condition	Test Result
VSWR=10:1, at all Phase Angles, VDD = +48Vdc, IDQ_Carrier= 240mA,	No Device
1C-WCDMA 5MHz Signal, 9.9 dB PAR, PAVG = 47.4 dBm, Frequency 3.4 - 3.6	
GHz, test on HOTLO Application Board	Degradation

Thermal Information

Parameter	Condition	Value (Typ)	Unit
Thormal Bosistanso	Tcase= 80°C, VDD = +48Vdc,		
Thermal Resistance Junction to Case (Rтн)	IDQ_Carrier= 240mA, 1C-WCDMA 5MHz	0.88	°C /W
	Signal, 9.9 dB PAR, PAVG = 47.4 dBm		

^{*}Uncorrected DPD, ACPR measured in 3.84MHz Channel Bandwidth @± 5MHz Offset

400W, 3.4 - 3.6 GHz GaN Amplifier

Product datasheet

Load Pull Performance Carrier

Test conditions unless otherwise noted: 25 °C, VDD = +48Vdc, IDQ= 200mA, PW = 40us, DC= 4%

	Max Output Power (Carrier)						
Freq	Z _source	Z_load [1]	Gain	P3dB	P3dB	Eff	
(GHz)	(Ω)	(Ω)	(dB)	(dBm)	(W)	(%)	
3.4	8.34-j*23.84	11.4-j*2.98	17.6	54.04	254	52.1	
3.6	22.66-j*24.66	10.6+j*0.06	18.1	54.18	262	52.3	

[1] Load impedance for optimum P3dB pout

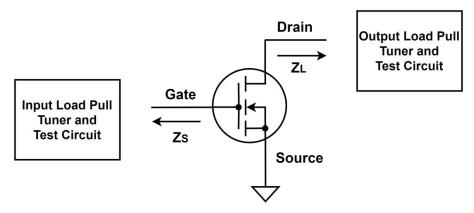
	Max Drain Efficiency (Carrier)						
Freq	Z _source	Z_load [2]	Gain	P3dB	P3dB	Eff	
(GHz)	(Ω)	(Ω)	(dB)	(dBm)	(W)	(%)	
3.4	8.34-j*23.84	9.69-j*14.48	18.8	52.1	162	71.3	
3.6	22.66-j*24.66	16.56-j*10.32	19.6	52.3	170	71.8	

^[2] Load impedance for optimum P3dB efficiency

400W, 3.4 - 3.6 GHz GaN Amplifier

Product datasheet

Load Pull Performance Peak

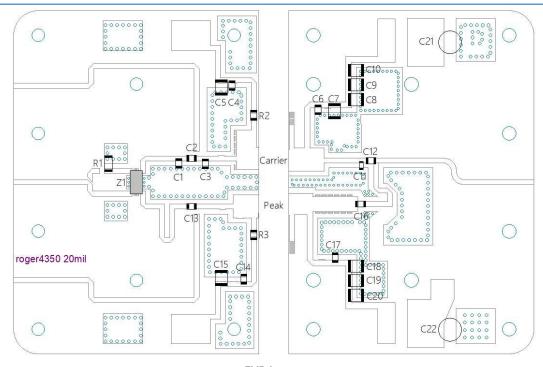

Test conditions unless otherwise noted: 25 °C, VDD = +48Vdc, IDQ= 300mA, PW = 40us, DC= 4%

	Max Output Power (Peak)						
Freq	Z _source	Z_load [1]	Gain	P3dB	P3dB	Eff	
(GHz)	(Ω)	(Ω)	(dB)	(dBm)	(W)	(%)	
3.4	8.21-j*21.17	13.38-j*6.45	17.4	55.6	363	63.2	
3.6	21.51-j*17.67	14.39-j*0.08	17.3	55.6	363	58.7	

[1] Load impedance for optimum P3dB pout

Max Drain Efficiency (Peak)						
Freq	Z_source Z_load [2] Gain			P3dB	P3dB	Eff
(GHz)	(Ω)	(Ω)	(dB)	(dBm)	(W)	(%)
3.4	8.21-j*21.17	9.33-j*12.89	18.7	54.6	288	69.8
3.6	21.51-j*17.67	14.79-j*10.75	19.3	54.4	275	68.3

[2] Load impedance for optimum P3dB efficiency


 $Z_{\rm source}$: Measured impedance presented to the input of the device at the package reference plane $Z_{\rm source}$: Measured impedance presented to the output of the device at the package reference plane

400W, 3.4 - 3.6 GHz GaN Amplifier

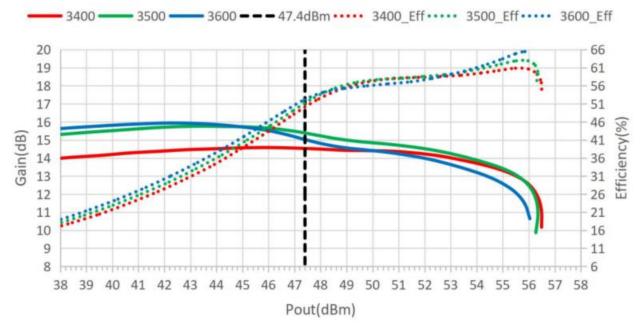
Product datasheet

HTH1D36P450H 3.4 - 3.6 GHz Reference Design

EVB Layout

Bill of Materials (BoM) - HTH1D36P450H

3.4 - 3.6 GHz Reference Design

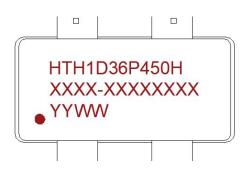

Reference	Value	Description	Manufacturer	P/N	
01		400W, 3.4 - 3.6 GHz	Holto	HTH1D36P450H	
Q1	_	GaN on SiC PA	Нопо	111111111111111111111111111111111111111	
C1	0p3F	MLCC	Murata	GQM2195G2ER30BB12	
C3	0p7F	MLCC	Murata	GQM2195G2ER70BB12	
C2, C13, C17	16pF	MLCC	Murata	GQM2195C2E160JB12	
C4, C12, C14	4p7F	MLCC	Murata	GQM2195G2E4R7BB12	
C16	6p8F	MLCC	Murata	GQM2195G2E6R8BB12	
C11	0p1F	MLCC	Murata	GQM1875C2ER10BB12	
C16	3pF	MLCC	Murata	GQM2195G2E3R0BB12	
C5, C7, C8, C9, C10 C15, C18, C19, C20	10uF /100V	MLCC	Murata	GRM32EC72A106KE05L	

Product datasheet

Reference	Value	Description	Manufacturer	P/N
C21, C22	220uF/ 100V	Electrolytic Capacitor	Vishay	MAL213669221E3
R1	51Ω	High Frequency/RF Resistors	ANAREN	C8A50Z4B
R1, R3	20Ω	Thick Film Resistor	YAGEO	RC0603FR-0720RL
Z1	-	Hybrid Coupler 3dB, 90°	ANAREN	X3C35F1-03S
PCB	Rogers 4350B (er = 3.66), 20 mil (0.508 mm), 35 μm (1oz)			

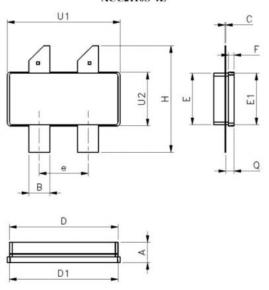
Performance Plots

Pulsed CW, Gain and Efficiency vs Pout


Test conditions unless otherwise noted: 25 °C, VDD = +48Vdc, IDQ= 350mA, Vgsp = -5.7V, PW = 100us, DC= 10% test on HOTLO Application Board

400W, 3.4 - 3.6 GHz GaN Amplifier

Product datasheet


Package Marking and Dimensions

- Line1 (fixed): Device name in W/O
- Line2 (unfixed): Marking Lot No in W/O (Sample: E596-EERA0001)
- Line3 (unfixed): Date Code
 This Marking SPEC only stipulates the
 content of Marking. For marking
 requirements such as font and size, please
 refer to the latest version of "Holto Product
 Printing Specification"

Marking

ACC2110S-4L

Symbol	Dimensions in Millimeters			Dimensions in Inches		
	Min.	Mon.	Max.	Min.	Mon.	Max.
Α	3.55	3.71	3.86	0.140	0.146	0.152
В	3.68	3.81	3.94	0.145	0.150	0.155
С	0.04	0.11	0.18	0.002	0.004	0.007
D	19.61	19.81	20.01	0.772	0.780	0.788
DI	19.61	19.81	20.01	0.772	0.780	0.788
E	9.28	9.40	9.52	0.365	0.370	0.375
El	9.28	9.40	9.52	0.365	0.370	0.375
e		8.89	-	(14)	0.35	-
F	0.95	1.02	1.09	0.037	0.040	0.043
Н	18.93	19.43	19.93	0.745	0.765	0.785
HI	12.57	12.70	12.83	0.495	0.500	0.505
L	4.71	4.83	4.95	0.185	0.190	0.195
Q	1.43	1.53	1.63	0.056	0.060	0.064
UI	20.51	20.58	20.65	0.807	0.810	0.813
U2	9.71	9.78	9.85	0.382	0.385	0.388

Package Dimensions

Product datasheet

Handling Precautions

Parameter	Grade	
Moisture Sensitivity Level MSL	3	

Parameter	Rating	Standard	
ESD – Human Body Model (HBM)	Class 1B	JESD22-A114	
ESD – Human Body Model (MM)	Class A	EIA/JESD22-A115	
ESD – Charged Device Model (CDM)	Class III	JESD22-C101	

RoHS Compliance

This product is compliant with the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU.

Datasheet Status

Document status	Product status	Definition
Objective Datasheet	Design simulation	Product objective specification
Preliminary Datasheet Customer sample		Engineering samples and first test results
Product Datasheet Mass production		Final product specification

Abbreviations

Acronym	Definition	
GaN on SiC	Gallium Nitride on Silicon Carbide	
CW	Continuous Waveform	

Product datasheet

Revision history

Document ID	Datasheet Status	Release Date	Revision Version
Rev 1.1	Preliminary	Febr. 2021	Preliminary
Rev 1.2	Preliminary	Sept. 2021	Demo EVB upgrade
Rev 1.3 Product March 2023		March 2023	New format based on English
VEA 1.2	Product	IVIAICII 2025	version datasheet

HOLTO

HTH1D36P450H 400W, 3.4 - 3.6 GHz GaN Amplifier

Product datasheet

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations and information about HOTLO:

• Web: www.andesource.com

• Email: andehk@andesource.com

For technical questions and application information:

Email:andetech@andesource.com

Important Notice

Information in this document is believed to be accurate and reliable. However, HOTLO does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

"Typical" parameters are the average values expected by HOTLO in large quantities and are provided for information purposes only. All information and specifications contained herein are subject to change without notice and customers should obtain and verify the latest relevant information before placing orders for HOTLO products.

The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

Applications that are described herein for any of these products are for illustrative purposes only. HOTLO makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using HOTLO products, and HOTLO accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the HOTLO product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third-party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

HOTLO products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety- critical systems or equipment, nor in applications where failure or malfunction of a HOTLO product can reasonably be expected to result in personal injury, death or severe property or environmental damage. This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.