
Product datasheet

Description

The H8G2527M10P is a LDMOS MMIC Integrated Asymmetrical Doherty based on 2-Stage with 10W saturated output power covering frequency range from 2.5 - 2.7 GHz.

The amplifier is 50 Ω Input/Output matched with a small compact footprint 7x7 mm which makes it ideal for integration.


Block Diagram

H8G2527M10P Block Diagram

Applications

- 3GPP 5G NR FR1 n7/38 and 4G-LTE B7/38
- Power Amplifier for Small Cells
- Driver Amplifier for Micro and Macro Base Stations
- Active Antenna Array for 5G mMIMO
- Repeaters/DAS
- Mobile Infrastructure

20 Pin LGA 7x7 mm Plastic Package

RoHS

Features

• Operating Frequency Range: 2.5 - 2.7 GHz

Operating Drain Voltage: +28VSaturation Output Power: 10W

Power Average: 1.25W

• 50 Ω Input/Output matched

• Integrated Input Divider

Integrated Output Combiner

 Integrated Asymmetrical Doherty Final Stage

High Efficiency: 40.3%@2.35GHz, WCDMA

High Gain: 26.9dB@2.35GHz, WCDMA

• Small footprint package: LGA 7x7 mm

Ordering Information

Part Number	Description
H8G2527M10P	Reel Package
H8G2527M10PEVB	2.5 - 2.7 GHz EVB

10W, 2.5 - 2.7 GHz LDMOS MMIC Amplifier

Product datasheet

RF Characteristics (Pulsed CW)

Freq (GHz)	P3dB (dBm)	Gain (dB)	Eff (%)	IRL (dB)
2.500	40.0	27.5	38.0	17.7
2.600	40.3	27.2	41.1	17.4
2.700	40.0	27.0	39.7	18.1

Test conditions unless otherwise noted: 25 °C, VDD = +28Vdc, IDQ = 28mA, Vgsp = Vgsm-0.58V, Pulse Width = 100us, Duty Cycle = 10% test on HOTLO Application Board

RF Characteristics (WCDMA)

Freq (GHz)	Gain (dB)	Eff (%)	IRL (dB)	ACPR* @5MHz (dBc)	ACPR* @10MHz (dBc)
2.500	26.7	38.0	19.9	-29.4	-42.6
2.600	26.6	39.5	19.5	-30.5	-42.9
2.700	26.5	38.1	19.8	-31.1	-43.5

Test conditions unless otherwise noted: 25 °C, VDD=+28Vdc, IDQ=28mA, Vgsp=Vgsm-0.58V, PAVG=31 dBm 1C-WCDMA 5MHz Signal, 7.2 dB PAR @ 0.01% CCDF test on HOTLO Application Board *Uncorrected DPD

Absolute Maximum Ratings

Parameter	Range/Value	Unit
Drain voltage (VDSS)	-0.5 to +65	V
Gate voltage (V _{GS})	-5 to +10	V
Drain voltage (VDD)	0 to +28	V
Storage Temperature (Tstg)	-55 to +150	°C
Case Temperature (Tc)	-40 to +125	°C
Junction Temperature (T _J)	-40 to +175	°C

Product datasheet

DC Characteristics

Parameter	Conditions	Min	Тур	Max	Unit
Breakdown Voltage V(BR)DSS	Vgs=0V, Ids=100uA	65	-	-	V
Gate-Source Threshold Voltage V _{GS(th)}	Vgs=Vds, Ids=5.2uA	1.2	-	1.6	V
Drain Leakage Current loss	Vgs=0V, Vds=28V	-	-	0.5	uA
Gate Leakage Current IGSS	Vgs=5V, Vds=0V	-	-	0.05	uA

RF Characteristics (Pulsed CW)

Parameter	Freq (GHz)	Min	Тур.	Max	Unit
P3dB	2.300	39.5	40.2	-	dBm

Test conditions unless otherwise noted: 25 °C, VDD = +28Vdc, IDQ = 28mA, Vgsp = Vgsm-0.58V, Pulse Width = 100us, Duty Cycle = 10% test on HOTLO Production Board

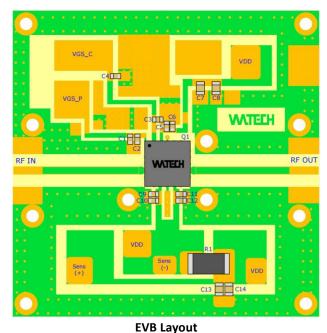
RF Characteristics (WCDMA)

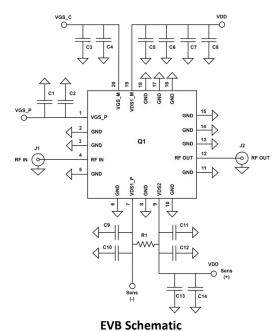
Parameter	Conditions	Min	Тур.	Max	Unit
Frequency	2.300			GHz	
Gain	PAVG = 31 dBm	25.5	27	-	dB
Eff	PAVG = 31 dBm	37.5	40	-	%
IRL	PAVG = 31 dBm	10	13	-	dB
ACPR@5MHz*	PAVG = 31 dBm	-	-28.5	-26.5	dBc

Test conditions unless otherwise noted: 25 °C, VDD=+28Vdc, IDQ = 28mA, Vgsp = Vgsm-0.58V, 1C-WCDMA 5MHz Signal, 7.2 dB PAR @ 0.01% CCDF test on HOTLO Production Board
*Uncorrected DPD

Load Mismatch Test

Condition	Test Result
VSWR=10:1, at all Phase Angles, VDD=+28Vdc, IDQ = 28 mA, Vgsp=Vgsm-	No Device
0.58V, PAVG = 34 dBm, Frequency 2.500 - 2700 GHz test on HOTLO	
Application Board	Degradation


Thermal Information

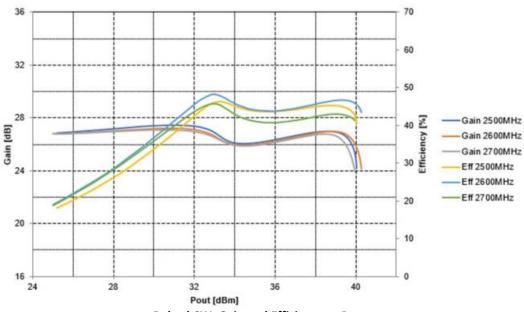

Parameter	Condition	Value (Typ)	Unit
Thermal Resistance	TCASE= 80°C, 1C-WCDMA 5MHz	9	°C /W
Junction to Case (Rтн)	Signal, 7.2 dB PAR, PAVG = 31 dBm		

Product datasheet

H8G2527M10P 2.5 - 2.7 GHz Reference Design (47 x47 mm)

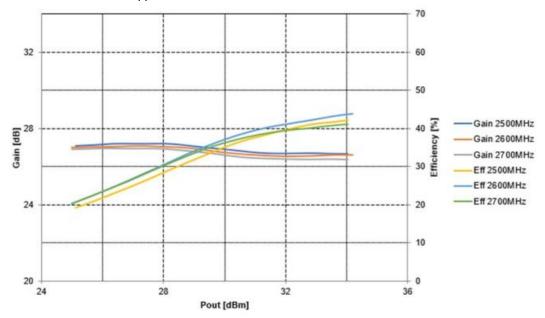
LVD Layout

EVB Schematic


Bill of Materials (BoM) - H8G2527M10P

2.5 - 2.7 GHz Reference Design

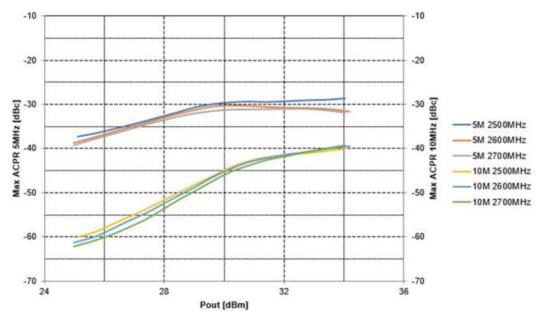
Reference	Value	Description	Manufacturer	P/N	
Q1	-	10W, 2.5 - 2.7 GHz LDMOS MMIC PA	Holto	H8G2527M10P	
C7,C8, C13,C14	1uF ±10%, 0805	Multi-Layer Ceramic Capacitor	Murata	GRM219R7YA105KA12	
C1-C6, C9 - C12	1uF ±10%, 0603	Multi-Layer Ceramic Capacitor	Murata	GCM188R71E105KA64D	
R1	100mΩ/1W, 0.1%	High-Precision Resistor	Vishay	Y44870R10000B0R	
РСВ	 Rogers 4350B, er = 3.66; Thickness= 20 mil (0.508 mm); Thickness copper plating = 35 μm (1oz) Soldered on a 47x47x10 mm Copper Base-Plate 				



Product datasheet

Pulsed CW, Gain and Efficiency vs Pout

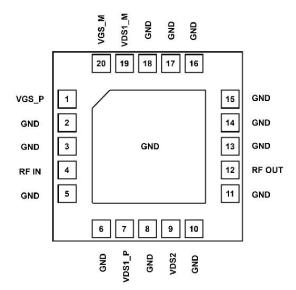
Test conditions unless otherwise noted: $25 \, ^{\circ}$ C, VDD = +28Vdc, IDQ = 28mA, Vgsp = Vgsm-0.58V, Pulse Width = $100 \, us$, Duty Cycle = 10% test on HOTLO Application Board


WCDMA, Gain and Efficiency vs Pout

Test conditions unless otherwise noted: 25 °C, VDD=+28Vdc, IDQ=28mA, Vgsp=Vgsm-0.58V, 1C-WCDMA~5MHz Signal, 7.2 dB PAR @ 0.01% CCDF test on HOTLO Application Board

10W, 2.5 - 2.7 GHz LDMOS MMIC Amplifier

Product datasheet


WCDMA, ACPR_5MHz, ACPR_10MHzvs Pout

Test conditions unless otherwise noted: 25 °C, VDD=+28Vdc, IDQ=28mA, Vgsp=Vgsm-0.58V, 1C-WCDMA 5MHz Signal, 7.2 dB PAR @ 0.01% CCDF test on HOTLO Application Board

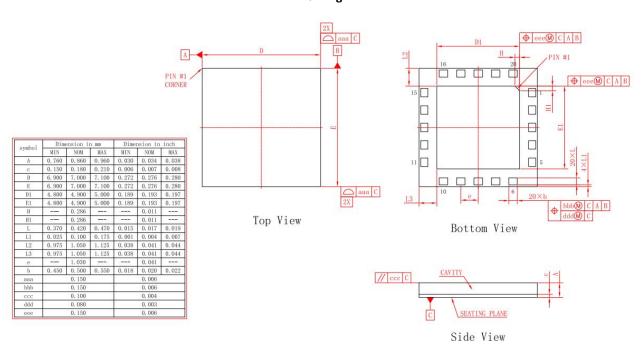
Product datasheet

Pin Configuration and Description

17	GND	Ground
18	GND	Ground
		Drain-Source
19	VDS1_M	Voltage Main
		Driver
20	VGS M	Gate-Source
20	VG3_IVI	Voltage Main

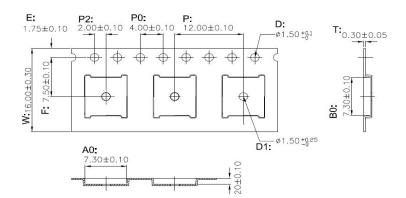
Pinout Device Configuration

Pin Number	Label	Description
1	VGS_P	Gate-Source
	VG3_F	Voltage Peak
2	GND	Ground
3	GND	Ground
4	RFIN	RF Input
5	GND	Ground
6	GND	Ground
		Drain-Source
7	VDS1_P	Voltage Peak
		Driver
8	GND	Ground
		Drain-Source
9	VDS2	Voltage Final
		Stage
10	GND	Ground
11	GND	Ground
12	RFOUT	RF Output
13	GND	Ground
14	GND	Ground
15	GND	Ground
16	GND	Ground


Product datasheet

Package Marking and Dimensions

- Line1 (fixed): Device name in W/O
- Line2 (unfixed): Marking Lot No in W/O (Sample: E596-20140001)
- Line3 (unfixed): Date Code + JY
- This Marking SPEC only stipulates the content of Marking. For marking requirements such as font and size, please refer to the latest version of "Holto Product Printing Specification"


Marking

Package Dimensions

Product datasheet

Tape and Reel Information

Notes:

- 1. Carrier tape color: BLACK.
- 2. Carrier material: PS (Polystyrene).
- 3. ESD surface resistivity < 1× 1011 Ω /square per EJA, JEDEC TNR specification.
- 4. Heat deflection temperature for Tape
- & Reel material: 62°C
- 5. Vicat softening temperature (10N) for Tape & Reel material: 95°C
- 6. Dimension is millimeter.

Tape & Reel Packaging Descriptions

Handling Precautions

Parameter	Grade
Moisture Sensitivity Level MSL	3

Parameter	Rating	Standard
ESD – Human Body Model (HBM)	Class 1B	JESD22-A114
ESD – Human Body Model (MM)	Class A	EIA/JESD22-A115
ESD – Charged Device Model (CDM)	Class III	JESD22-C101

10W, 2.5 - 2.7 GHz LDMOS MMIC Amplifier

Product datasheet

This product is compliant with the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU.

Datasheet Status

Document status	Product status	Definition
Objective Datasheet	Design simulation	Product objective specification
Preliminary Datasheet	Customer sample	Engineering samples and first test results
Product Datasheet	Mass production	Final product specification

Abbreviations

Acronym	Definition
LDMOS	Laterally-Diffused Metal-Oxide Semiconductor
CW	Continuous Waveform
VSWR	Voltage Standing Wave Ratio

Revision history

Document ID	Datasheet Status	Release Date	Revision Version
Rev 3.0	Product	May 2020	Product release
Rev 3.1	Product	March 2023	New format based on English
			version datasheet

10W, 2.5 - 2.7 GHz LDMOS MMIC Amplifier

Product datasheet

For the latest specifications, additional product information, worldwide sales and distribution locations and information about HOTLO:

• Web: <u>www.andesource.com</u>

• Email: andehk@andesource.com

For technical questions and application information:

Email: andetech@andesource.com

Important Notice

Information in this document is believed to be accurate and reliable. However, HOTLO does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

"Typical" parameters are the average values expected by HOTLO in large quantities and are provided for information purposes only. All information and specifications contained herein are subject to change without notice and customers should obtain and verify the latest relevant information before placing orders for HOTLO products.

The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

Applications that are described herein for any of these products are for illustrative purposes only. HOTLO makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using HOTLO products, and HOTLO accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the HOTLO product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third-party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

HOTLO products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety- critical systems or equipment, nor in applications where failure or malfunction of a HOTLO product can reasonably be expected to result in personal injury, death or severe property or environmental damage. This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.